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Properties of states bound by potentials with positive 
Laplacian 

A K Common 
Mathematical Institute, University of Kent, Canterbury, Kent, U K  

Received 27 November 1984, in final form 18 March 1985 

Abstract. States of two-body systems bound by a spherically symmetric potential whose 
Laplacian is positive are considered. Constraints are derived on the kinetic energies and 
radii of states with the lowest energy for a given angular momentum, which improve on 
previous results of the author. These constraints become relatively very tight at high angular 
momentum. Inequalities are also derived between the energies of states of differing angular 
momentum and particle mass. 

1. Introduction 

In an earlier work (Common 1983) the properties of heavy quark-antiquark states 
were investigated in a potential model framework, and as such these are true for any 
two-body system bound by certain classes of spherically symmetric potentials. Recently 
Baumgartner et a1 (1984) have shown that the sign of the Laplacian of the potential, 
if it remains unchanged, determines the relative ordering of energy levels with the 
same principal Coulomb quantum number. They gave examples in nuclear, atomic 
and solid-state physics as well as particle physics where their results would hold. 

Here the case when the Laplacian is positive is considered so that for a symmetric 
potential V( r )  

1 d dV(  
- r 'd r  -( r 2 2 )  d r  > 0 

r>0.  ( l . l a )  

It is also assumed that 

lim( r2 V( r ) )  = 0. (1.1 b )  
r - 0  

Baumgartner et a1 (1984) were then able to prove that 

E ( N ,  I ) >  E ( N ,  Ii-1) (1.2) 

where E ( N ,  I )  is the energy of the level with angular momentum 1 and principal 
Coulomb quantum number N = n + I +  1, n being the number of nodes of the radial 
wavefunction. A crucial result in their proof was that for the class of potentials given 
in (1.1) 
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where uf(  r)  is the reduced wavefunction of the ground state (n = 0) corresponding to 
angular momentum 1. In $ 2 this result is used to obtain inequalities between average 
values of powers of r for given I and also bounds on 1; u12(r) dr. It will be seen that 
the former take the form of 'reverse' Schwartz inequalities and may be used to bound 
the position and  width of the peak of these ground states. 

In 8 3 upper and lower bounds to the kinetic energy of the above states are derived, 
which differ only by a numerical factor which tends to unity as I +a. They therefore 
become relatively very tight for large 1. Inequalities between energies of states of 
differing mass and angular momentum are also established, which in the framework 
of quarkonium models may be used to estimate mass differences between quarks of 
different types (Grosse and  Martin 1978). In the final section the results and conclusions 
are presented. 

2. The basic inequalities 

The main inequalities used here are given by the following theorem, the proof of which 
is given in appendix 1. 

Theorem. Let u f ( r )  be the ground-state wavefunction of angular momentum 1 corre- 
sponding to potential V( r)  satisfying (1.1). Then: 

(i) if n > k and are such that all integrals concerned exist 

( I , +  12+2+ k ) ( r k - ' ) f l , f ~ ( r f l ) ~ l , f ~ ~  (1 ,  + 12+2+ ~)(rfl- ' )f , , f~(rk)fl ,f~ (2.1) 
r for all I , ,  1 2 z 0 ,  where ( r ' ) f l , f 2 = ~ o  r'uf,(r)uf2(r) d r ;  

(ii) for all I s 0  

It is assumed that the uf ( r ) ,  which have n o  nodes in (0, CO), are positive. The 
allowed values of n, k are determined by the behaviour uf(  r )  = r f t l  as r + 0 for potentials 
satisfying (1.lb).  

The relations (2.1) are the reverse of the usual 'moment inequalities' as can be seen 
from the case with I ,  = I ,  = I ;  k = 1, n = 2. Then 

which may be compared with the standard inequalities 

( r2) f  3 (r)? 

in the general case, or (Common 1981) 

(4+ 21)*(r ) :  
(r2)f (3 + 2 I )  (5 + 2 I )  

(2 .4a)  

(2.46) 

when d V/dr  z 0 for all r > 0. The bounds are quite tight especially for this latter class 
of potentials. Even in the worst case ( I  = 0) upper and lower bounds are in the ratio 
5 : 4  while as I+a this ratio tends to unity. Bounds on the width of the peak 
AI = ((r2)f -(r);)1'2 of the ground state of angular momentum 1 follow immediately 



States bound by potentials with positive Laplacian 2221 

from (2.3) and  (2.4b) and  are 

These improve on the upper bounds given previously (Common 1983) especially for 
higher values of 1. It must be remembered that the upper bounds (2.3), (2.5) are for 
the case when V(r) has a positive Laplacian. 

In this earlier work an upper bound was also obtained to the position r = rMI  of 
the maximum of u:(r) which is 

rMI  s 3 ” 2 ( r 2 ) ; ’ 2  (2.6) 

for all potentials. A corresponding lower bound was given in the case 1=0 but 
not for other values. We now rectify this by using (2.1) with I ,  = l2  = I ;  n = 1, k = 
-(21+2)”2 to prove in appendix 1 that 

[ 1 - 2(21+ 2)”2/(21 + 3)] 1>$(&-1) 
O S  1 s $ ( J 3 - 1 ) .  (2.7) 21/[(21+ 1)(21+3)] 

The upper and  lower_bounds given by (2.6) and (2.7) are rather weak at low I, but 
their ratio tends to J 3  : 1 as 1-+ CC so in this limit they are quite restrictive. 

3. Bounds on the kinetic energy 

In an earlier work (Common 1981) it was shown that the kinetic energy TI of a state 
of angular momentum 1 has the upper bounds 

and lower bounds 

1 d V  (r-l)l 
2 0 d r  / ( F 2 ) /  

T 1 3 -  - - 

if V(r) satisfies (1.1). Using (2.1) the following inequalities are easily derived: 

( r ) [ s  T I S - ( - )  1 d V  ( r ) /  
2 d r  I 

and 

( 3 . 1 ~ )  

( 3 . 2 ~ )  

(3.2b) 

where RI = (21+ 1) / (21+3)  and (21+ 1) / (21+4)  for the two classes of potentials corre- 
sponding to ( 3 . l a )  and (3 . lb)  respectively. These relations have the nice feature that 
upper and  lower bounds differ only by a numerical factor which tends to unity as 
1 + CC. The bounds are particularly useful in the case when I = 0 for then (d V/dr),  = 
( l / r n ) ~ u ~ ( O ) ~ ’  where rn is the mass of each of the identical particles in the bound 
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system. They were used (Common 1981) to obtain bounds on quark mass differences 
from the leptonic decay roles of quarkonium states which give estimates for lu:(O)1”. 

Alternative bounds to TI may be obtained in terms of (1/ r’), and these results lead 
to relations between energy levels of states of different particle mass and angular 
momentum as will be shown later. A lower bound follows immediately from (2.2): 

T l = ~ ~ o r ( u ~ 2 + w u ~ )  d r s - ( / + l ) ( l + i ) ( r - 2 ) l  1 
r2 m (3.3) 

for potentials satisfying (1.1). This improves on our previous bound (Common 1983) 
obtained for potentials such that (d/dr)3(  r2V( r ) )  2 0 and --CO < lim,,o( rV( r ) )  s 0, the 
latter in particular being a more restrictive condition compared with (1.1). 

For this class of potentials, Grosse and Martin (1978) have obtained the inequality 

E(M1,  (Ml /Mo)1’2-  1 ) s  E(M0,O) M,> Mo>O (3.4) 

for energy levels E ( m ,  I )  of the bound states with angular momentum 1 of identical 
particles of mass m. We now recover this bound for our alternative class of potentials 
with positive Laplacian. 

We have that 

and using (3.3), that 

Setting 2 In( 1 + 1) = In m /  MO = A and integrating (3.6) from A = 0 to A = In M,/  MO, we 
do in fact obtain the bound (3.4). The method can be easily generalised to the case 
when 1 f 0 on the RHS.  

A new complementary upper bound for the kinetic energy when 1 > $ is given by 

T , s ( w / m ) ( r - 2 ) l  (3.7) 

where W, = ( l + l ) ( l + i )  and ( I +  1)(1+2) for the potentials of inequalities ( 3 . 1 ~ ~ )  and 
(3.lb) respectively. For angular momenta O s  Is $ we have to make the added assump- 
tion that d V/dr 3 0 for all r > 0, and then the bound (3.7) holds with W, = 9-  1( 1 + 1) 
and - I (  1 + 1) respectively. The proofs are given in appendix 2. 

Corresponding to (3.6), we have for monotonic increasing concave potentials 
satisfying (1.1) that 

[9-1(/ ,+1)] aE(m,  I )  a E ( m ,  I )  
(21+ 1) a1 am 

+ m  SO $3130 

( l + l ) ( l + ; )  d E ( m ,  I)+,aE(m, I )  
(21 + 1) a1 am 

3 0  l > i .  
(3.8) 

Proceeding as above we take 
“ I  

A = In - = F (  1’) dl‘ 
MO J ‘  0 

(3.9) 
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where 

(211 l)/[?- l ( l +  l ) ]  t 2 1 3 0 ,  

(21 + l ) / [ ( l +  1)(1 +;)I 1 > t. F (  I )  = 
( 3 . 1 0 ~ )  

(3.10b) 

Then (3.8) is equivalent to the relation dE /dA 2 0 .  Integrating this inequality from 
A = O  to A =In  M , / M o  

E(MI, Ll) 2 E(M0,O) M,>M,>O (3.11) 

where L ,  is the positive root of 

i 2 +  I -?(I  - M,,/ M , )  = o 
if this root is si and otherwise is the positive root of 

( 3 . 1 2 ~ )  

1 + [ 3--- 16 (MI)';] - I+---- 9 16 (MI)"* - = o .  
3 J 5  MO 4 345 M" 

(3.12b) 

Similar bounds may be obtained for the class of potentials of (3.lb) and they comple- 
ment the lower bounds to E(M,,  0) given by (3.4). 

4. Summary and conclusions 

For the class of potentials with positive Laplacian, inequalities have been derived 
between average values of powers of the interparticle distance of the corresponding 
two-particle ground states of given angular momentum 1. They are the reverse of the 
usual 'moment' inequalities and lead to upper and lower bounds on physical quantities 
which have the nice feature of differing only by a numerical factor. Also this factor 
tends to unity as 1 + oc so these bounds become relatively very tight at  large 1. 

In the past constraints of the type discussed here have been used in the framework 
of potential models of quarkonium. For instance, bounds were put on the difference 
between the masses of the 'charmed' and 'bottom' quarks (Martin and Grosse 1978, 
Common 1981) and on the masses of 'beautiful' hadrons (Martin 1981). With some 
assumptions on the spin nature of the quark-antiquark forces, Khare (1981a) studied 
the fine structure of the quarkonium spectroscopy using the above type of bounds and 
he also obtained bounds on the decay rates of some of these states, (Khare 1981b). 
The new bounds discussed here could lead to further developments in this field of study. 

Appendix 1 

Proof of (2. I) and (2.2). Consider 

(Al . l )  
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If phases are chosen so that U,( r )  3 0 for all r 2 0, then 

U,, ( r ’) U/?( r ’ ) ( r r k  ( r j I , ,  l2 - r’”( r ?Il ,/?I d 

is positive for all r > 0 when k < n, since the integrand changes sign only once, being 
positive close to r = 0 while the integral +O as r + a. using (1.3) we find 

[( 1, + 1 1 + ( I* + 1 )Ih,  . I .  

= - k (  ri, - ) /, , r ’’ ) I ,  , 1 2  + n ( rn  -’ ) I ,  , I 2 (  r )I, .Iz 

on integrating by parts twice. This result is equivalent to (2.1). 
Similarly, 

is equivalent to (2.2). 
To obtain lower bounds to rM/, we use the fact that 

(Al .2)  

(A1.3) 

(A1.4) 

so long as the integrals exist which require s < 21+ 1. Therefore for these values of s 

(A1.5) 

from (2.1) with n = 1, k = -s and I ,  = I 2  = I .  The bound (2.7) is the maximum of the 
right-hand side of (A1.5) as a function of s < 21+ 1. 

Appendix 2 

For the class of potentials in (3 . l a )  

(A2.1) 

( I  + 1 ) (  I + 5) 
c ( r - 7 ,  m 

on using (2.1). The corresponding result for the potentials (3 . lb )  follows in the same 
manner and  may be continued to 1 = $. 

For 0 s 1 < 4 we have to work a little harder. We use an approach developed by 
Bertlmann and  Martin (1980) to bound dTl/dm by -dE(m, l ) /am.  Now dul ( r ) /d l  has 
a unique zero in (0, m) say at r = ro. To prove this we use the method of Rosner et a1 
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(1978). The radial equation for u I ( r )  is taken in the form 

u l ( r ) / u I ( r )  = m( V( r )  - E(m,  I ) ) +  l ( l +  l ) / r 2 .  (A2.2) 

Differentiating with respect to 1, multiplying by U: and integrating over (0, r )  gives 

(A2.3) 

The last inequality follows from the fact that the integrand has only one zero in ( 0 ,  OO), 

is positive close to r = O  and as r - * a  the integral + O  from (3.5). Therefore U;' au,/al 
is an increasing function of r and has exactly one zero since jr uI a u , / a l  d r  = 0. Then 
using the 'virial theorem', 

3= d l  lox ul$(rVf(r)-roV'(ro)) d r  (A2.4) 

and 

For the class of potentials with positive Laplacian, the right-hand side of (A2.5) 
is positive since a u , / a l  is < O  for r close to zero. Hence 

( d / d r ) ( f r  d Vld r )  
(d /d r ) (  V( r )+$r  d V / d r )  

) =-1  (2) (5) - ' 2 inf ( (A2.6) 

when d V l d r  3 0 all r, so that 
I i 2  aE( l ' ,  m)  I f 2  

d l ' =  J (21'+ l)(r-*)/, dl'. (A2.7) 
I 

T S  T ~ ~ ~ +  J a l ,  
I 

However, again from the fact (Common 1980) that U:.- U: has a unique zero in (0, CO), 

( r-z)ls s ( r-2)l for 1 s 1'. S O  finally for o s I s t 

TI S T l f 2 +  1 (21'+ 1) d1 ' (F2) /  
1/2 

I 

= TI,, + [$ - 1 ( 1 + 1 )]( r-2)l. 

Using the bounds (A2.1) for we arrive at our result. 
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